If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16^2+20^2=c^2
We move all terms to the left:
16^2+20^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+656=0
a = -1; b = 0; c = +656;
Δ = b2-4ac
Δ = 02-4·(-1)·656
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{41}}{2*-1}=\frac{0-8\sqrt{41}}{-2} =-\frac{8\sqrt{41}}{-2} =-\frac{4\sqrt{41}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{41}}{2*-1}=\frac{0+8\sqrt{41}}{-2} =\frac{8\sqrt{41}}{-2} =\frac{4\sqrt{41}}{-1} $
| 16x16+20x20=x | | 5-7i-7-11i=0 | | y=-0-6 | | 5(f-1)=-35 | | |3k−2|=2|k+2||3k−2| | | z/7=-22 | | (5x-2)=1 | | -3/7x-8=-59/7 | | (2)^x=3.85 | | 10(s-4)=-76 | | (5x-1)=2 | | -63=3(3x-3) | | 4(x+5)=2(x-3 | | v+5=v−5 | | 18=3-4n+3 | | 7y=68 | | -5x=13x=64 | | 3(x5)=30 | | 3/y+6=8 | | 4x+3+4x+1=180 | | 8(2l+8)=224 | | -6/7x+5/7=-7 | | 1/2(x+5)=20 | | 4y=9*9-13 | | 42-2x=14+12x | | 8(u-9)=56 | | 2a^2-2a+49=0 | | 7x+4x-3x-2x-5=13 | | 5x=2−(x−7) | | 11w-5w=54 | | 3(e+2)=9 | | 3x+2+-2+x=180 |